}); УЗО - устройство защитного отключения - Нов-электро

УЗО – устройство защитного отключения

1. ОБЩИЕ СВЕДЕНИЯ

Устройства защитного отключения, реагирующие на дифференциальный ток, наряду с устройствами защиты от сверхтока, относятся к дополнительным видам защиты человека от поражения при косвенном прикосновении, обеспечиваемой путем автоматического отключения питания. Защита от сверхтока (при применении защитного зануления) обеспечивает защиту человека при косвенном прикосновении – путем отключения автоматическими выключателями или предохранителями поврежденного участка цепи при коротком замыкании на корпус.

При малых токах замыкания, снижении уровня изоляции, а также при обрыве нулевого защитного проводника зануление недостаточно эффективно, поэтому в этих случаях УЗО является единственным средством защиты человека от электропоражения.

Устройство защитного отключения (УЗО)

Рис. 1. Устройство защитного отключения (фирма ABB)

В основе действия защитного отключения, как электрозащитного средства, лежит принцип ограничения (за счет быстрого отключения) продолжительности протекания тока через тело человека при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением. Из всех известных электрозащитных средств УЗО является единственным, обеспечивающим защиту человека от поражения электрическим током при прямом прикосновении к одной из токоведущих частей.

Другим, не менее важным свойством УЗО, является его способность осуществлять защиту от возгорания и пожаров, возникающих на объектах, вследствие возможных повреждений изоляции, неисправностей электропроводки и электрооборудования.

Короткие замыкания, как правило, развиваются из дефектов изоляции, замыканий на землю, утечек тока на землю. УЗО, реагируя на ток утечки на землю или защитный проводник, заблаговременно, до развития в короткое замыкание, отключает электроустановку от источника питания, предотвращая тем самым недопустимый нагрев проводников, искрение, возникновение дуги и возможное последующее возгорание.

В отдельных случаях энергии, выделяемой в месте повреждения изоляции при протекании токов утечки, достаточно для возникновения очага возгорания и, как следствие, пожара. По данным различных отечественных и зарубежных источников, локальное возгорание изоляции может быть вызвано довольно незначительной мощностью, выделяемой в месте утечки. В зависимости от материала и срока службы изоляции эта мощность составляет всего 40-60 Вт. Это означает, что своевременное срабатывание УЗО противопожарного назначения с установкой 300 мА предупредит выделение указанной мощности, и, следовательно, не допустит возгорания.

В настоящее время действует международная классификация УЗО, разработанная международной электротехнической комиссией (МЭК). Принято общее название – RCD – residual current protective device, в переводе – защитное устройство по разностному (дифференциальному) току.

2. ПРИНЦИП ДЕЙСТВИЯ УЗО

Функционально УЗО можно определить как быстродействующий защитный выключатель, реагирующий на дифференциальный ток в проводниках, подводящих электроэнергию к защищаемой электроустановке.

Основные функциональные блоки УЗО представлены на рис. 2.

Схема УЗО

Рис. 2. Схема УЗО с функциональными блоками

Важнейшим функциональным блоком УЗО является дифференциальный трансформатор тока I. В абсолютном большинстве УЗО, производимых и эксплуатируемых в настоящее время во всем мире, в качестве датчика дифференциального тока используется именно трансформатор тока. В литературе по вопросам конструирования и применения УЗО этот трансформатор иногда называют трансформатором тока нулевой последовательности – ТТНП, хотя понятие “нулевая последовательность” применимо только к трехфазным цепям и используется при расчетах несимметричных режимов многофазных цепей.

Пусковой орган (пороговый элемент) 2 выполняется, как правило, на чувствительных магнитоэлектрических реле прямого действия или электронных компонентах. Исполнительный механизм 3 включает в себя силовую контактную группу с механизмом привода.

В нормальном режиме, при отсутствии дифференциального тока – тока утечки, в силовой цепи по проводникам, проходящим сквозь окно магнитопровода трансформатора тока I протекает рабочий ток нагрузки. Проводники, проходящие сквозь окно магнитопровода, образуют встречно включенные первичные обмотки дифференциального трансформатора тока. Если обозначить ток, протекающий по направлению к нагрузке, как I1, а от нагрузки как I2, то можно записать равенство:

I1 = I2

Равные токи во встречно включенных обмотках наводят в магнитном сердечнике трансформатора тока равные, но векторно встречно направленные магнитные потоки Ф1 и Ф2. Результирующий магнитный поток равен нулю, ток во вторичной обмотке дифференциального трансформатора также равен нулю.

Пусковой орган 2 находится в этом случае в состоянии покоя. При прикосновении человека к открытым токопроводящим частям или к корпусу электроприемника, на который произошел пробой изоляции, по фазному проводнику через УЗО кроме тока нагрузки I1 протекает дополнительный ток – ток утечки (I0), являющийся для трансформатора тока дифференциальным (разностным).

Неравенство токов в первичных обмотках (I1 + I0 в фазном проводнике) и (I2, равный I1, в нейтральном проводнике) вызывает неравенство магнитных потоков и, как следствие, возникновение во вторичной обмотке трансформированного дифференциального тока. Если этот ток превышает значение уставки порогового элемента пускового органа 2, последний срабатывает и воздействует на исполнительный механизм 3.

Исполнительный механизм, обычно состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь. В результате защищаемая УЗО электроустановка обесточивается.

Для осуществления периодического контроля исправности (работоспособности) УЗО предусмотрена цепь тестирования 4. При нажатии кнопки “Тест” искусственно создается отключающий дифференциальный ток. Срабатывание УЗО означает, что оно исправно.

3. ТИПЫ УЗО

По условиям функционирования УЗО подразделяются на следующие типы: АС, А, В, S, G.

·         УЗО типа АС – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.

·         УЗО типа А – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.

·         УЗО типа В – устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.

·         УЗО типа S – устройство защитного отключения, селективное (с выдержкой времени отключения).

·         УЗО типа G – то же, что и типа S, но с меньшей выдержкой времени.

Принципиальное значение при рассмотрении конструкции УЗО имеет разделение устройств по способу технической реализации на следующие два типа:

УЗО, функционально не зависящие от напряжения питания (электромеханические). Источником энергии, необходимой для функционирования – выполнения защитных функций, включая операцию отключения, является для устройства сам сигнал – дифференциальный ток, на который оно реагирует;

УЗО, функционально зависящие от напряжения питания (электронные). Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника. Применение устройств, функционально зависящих от напряжения питания, более ограничено в силу их меньшей надежности, подверженности воздействию внешних факторов и др. Однако основной причиной меньшего распространения таких устройств является их неработоспособность при часто встречающейся и наиболее опасной по условиям вероятности электропоражения неисправности электроустановки, а именно – при обрыве нулевого проводника в цепи до УЗО по направлению к источнику питания. В этом случае “электронное” УЗО, не имея питания, не функционирует, а на электроустановку по фазному проводнику выносится опасный для жизни человека потенциал.

В конструкции “электронных” УЗО, производимых в США, Японии, Южной Корее и в некоторых европейских странах (рис. 3.1), как правило, заложена функция отключения от сети защищаемой электроустановки при исчезновении напряжения питания. Эта функция конструктивно реализуется с помощью электромагнитного реле, работающего в режиме самоудерживания. Силовые контакты реле находятся во включенном положении только при протекании тока по его обмотке (аналогично магнитному пускателю).

УЗО с функцией отключения от сетиРис. 3.1. УЗО с функцией отключения от сети

1 – Дифференциальный трансформатор тока
2 – Электронный усилитель
3 – Цепь теста
4 – Удерживающее реле
5 – Блок управления
Н – Нагрузка
Т – Кнопка “Тест”

При исчезновении напряжения на вводных зажимах устройства якорь реле отпадает, при этом силовые контакты размыкаются, защищаемая электроустановка обесточивается. Подобная конструкция УЗО обеспечивает гарантированную защиту от поражения человека в электроустановке и в случае обрыва нулевого проводника.

В США применяются в основном УЗО, встроенные в розеточные блоки. На одном объекте, например, небольшой квартире устанавливается по 10-15 устройств. Розетки, не оборудованные УЗО, обязательно запитываются шлейфом от розеточных блоков с УЗО.

К сожалению, в нашей стране, в отличие от общепринятой в мировой практике концепции, целым рядом предприятий производятся электронные УЗО на базе типового автоматического выключателя. Эти устройства функционируют следующим образом. При возникновении дифференциального тока с модуля защитного отключения, содержащего дифференциальный трансформатор и электронный усилитель, на скомпонованный с модулем автоматический выключатель подается либо электрический сигнал (на модифицированную катушку токовой отсечки), либо с якоря промежуточного реле через поводок осуществляется механическое воздействие на механизм свободного расцепления выключателя. В результате автоматический выключатель срабатывает и отключает защищаемую цепь от сети. При отсутствии напряжения на входных зажимах такого устройства (например, при обрыве нулевого проводника до УЗО), во-первых, из-за отсутствия питания не функционирует электронный усилитель, во-вторых, отсутствует энергия, необходимая для срабатывания автоматического выключателя.

Таким образом, в случае обрыва нулевого проводника в питающей сети устройство неработоспособно и не защищает контролируемую цепь. При этом в данном аварийном режиме (при обрыве нулевого проводника) опасность поражения человека электрическим током усугубляется, так как по фазному проводнику через неразомкнутые контакты автоматического выключателя в электроустановку выносится потенциал. Пользователь, полагая, что в сети напряжения нет, теряет обычную бдительность по отношению к электрическому напряжению и часто предпринимает попытки устранить неисправность и восстановить электропитание – открывает электрический щит, проверяет контакты, – подвергая тем самым свою жизнь смертельной опасности.

В европейских странах – Германии, Австрии, Франции электротехнические нормы допускают применение УЗО только первого типа – не зависящих от напряжения питания. УЗО второго типа разрешено применять в цепях, защищаемых электромеханическими УЗО, только в качестве дополнительной защиты для конечных потребителей, например, для электроинструмента, нестационарных электроприемников и т.д. Электромеханические УЗО производят ведущие европейские фирмы – Siemens, ABB, GE Power, ABL Sursum, Hager, Kopp, AEG, Baco, Legrand, Merlin-Gerin, Circutor и др.

В качестве примечания необходимо отметить, что, к сожалению, на отечественном рынке появилось огромное количество самых разнообразных подделок УЗО и устройств не установленного происхождения, имеющих часто привлекательный внешний вид, но по техническим параметрам не выдерживающих даже приемосдаточных испытаний.

Применение подобных устройств, учитывая особое назначение УЗО – защиту жизни и имущества человека, является совершенно недопустимым. Поэтому, при приобретении УЗО необходимо обратить особое внимание на наличие сопроводительной технической документации, в том числе обязательно двух сертификатов – сертификата соответствия и сертификата пожарной безопасности.

Существует класс приборов – УЗО со встроенной защитой от сверхтоков (RCBO), так называемые “комбинированные” УЗО (рис. 3.2).

УЗО со встроенной защитой от сверхтоков

Рис. 3.2. УЗО со встроенной защитой от сверх токов

1 – Катушка токовой отсечки
2 – Биметаллическая пластина
3 – Дифференциальный трансформатор тока
4 – Магнитоэлектрический расцепитель, реагирующий на дифференциальный ток
5 – Тестовый резистор
6 – Силовые контакты
Н – Нагрузка
Т – Кнопка “Тест”

Практически все фирмы-производители УЗО имеют в своей производственной программе УЗО со встроенной защитой от сверхтоков. Как правило, их доля в общем объеме выпускаемых устройств защитного отключения не превышает одного-двух процентов. Это объясняется довольно ограниченной областью их применения – незначительная, неизменяемая нагрузка, автономный электроприемник и т.п. Показательным примером является освещение рекламных щитов, установленных на уличных павильонах остановок общественного транспорта, где питание двух-трех люминесцентных ламп осуществляется через комбинированное УЗО с номинальным рабочим током 6 А и номинальным отключающим дифференциальным током 30 мА.

Конструктивной особенностью УЗО со встроенной защитой от сверхтоков является то, что механизм размыкания силовых контактов запускается при воздействии на него любого из трех элементов – катушки с сердечником токовой отсечки, реагирующей на ток короткого замыкания, биметаллической пластины, реагирующей на токи перегрузки и магнитоэлектрического расцепителя, реагирующего на дифференциальный ток.

Применение УЗО со встроенной защитой от сверхтоков, целесообразно лишь в обоснованных случаях, например, для одиночных потребителей электроэнергии.

4. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ УСТРОЙСТВ ЗАЩИТНОГО ОТКЛЮЧЕНИЯ

Согласно ГОСТ Р 50807-95 нормируются следующие параметры УЗО:

·   Номинальное напряжение (Un) – действующее значение напряжения, при котором обеспечивается работоспособность УЗО. Un = 220, 380 В.

·   Номинальный ток нагрузки (In) – значение тока, которое УЗО может пропускать в продолжительном режиме работы. In = 6; 16; 25; 40; 63; 80; 100; 125 А.

·   Номинальный отключающий дифференциальный ток (I0n) – значение дифференциального тока, которое вызывает отключение УЗО при заданных условиях эксплуатации. I0n = 0,006; 0,01; 0,03; 0,1; 0,3; 0,5 А.

·   Номинальный неотключающий дифференциальный ток (I0n0) – значение дифференциального тока, которое не вызывает отключение УЗО при заданных условиях эксплуатации. I0n0 = 0,5 I0n.

·   Предельное значение неотключающего сверхтока (Inm) – минимальное значение неотключающего сверхтока при симметричной нагрузке двух и четырехполюсных УЗО или несимметричной нагрузке четырехполюсных УЗО. Inm = 6 In.

·   Сверхток – любой ток, который превышает номинальный ток нагрузки.

·   Номинальная включающая и отключающая способность (коммутационная способность) (Im) – действующее значение ожидаемого тока, который УЗО способно включить, пропускать в течение своего времени размыкания и отключить при заданных условиях эксплуатации без нарушения его работоспособности. Минимальное значение Im = 10 In или 500 А (выбирается большее значение).

·   Номинальная включающая и отключающая способность по дифференциальному току (Im) – действующее значение ожидаемого дифференциального тока, которое УЗО способно включить, пропускать в течение своего времени размыкания и отключить при заданных условиях эксплуатации без нарушения его работоспособности. Минимальное значение Im = 10 In или 500 А (выбирается большее значение).

·   Номинальный условный ток короткого замыкания (Inc) – действующее значение ожидаемого тока, которое способно выдержать УЗО, защищаемое устройством защиты от коротких замыканий, при заданных условиях эксплуатации, без необратимых изменений, нарушающих его работоспособность. Inc = 3000; 4500; 6000; 10 000 А.

·   Номинальный условный дифференциальный ток короткого замыкания (I0c) – действующее значение ожидаемого дифференциального тока, которое способно выдержать УЗО, защищаемое устройством защиты от коротких замыканий при заданных условиях эксплуатации без необратимых изменений, нарушающих его работоспособность. I0c = 3000; 4500; 6000; 10 000 А.

·   Номинальное время отключения Tn – промежуток времени между моментом внезапного возникновения отключающего дифференциального тока и моментом гашения дуги на всех полюсах.

Стандартные значения максимально допустимого времени отключения УЗО типа АС при любом номинальном токе нагрузки и заданных нормами значениях дифференциального тока не должны превышать приведенных в табл. 4.1.

Таблица 4.1.

Время отключения Tn, с

I0n

2 I0n

5 I0n

500 А

0,3

0,15

0,04

0,04

 

Максимальное время отключения, установленное в табл. 4.1, распространяется также на УЗО типа А. При этом испытания УЗО типа А проводят при значениях токов I0n, 2I0n, 5I0n и 500 А с коэффициентом 1,4 (при I0n > 0,01 А) и с коэффициентом 2 (при I0n = < 0,01 А).

Стандартные значения допустимого времени отключения и неотключения для УЗО типа S при любом номинальном токе нагрузки свыше 25 А и значениях номинального дифференциального тока свыше 0,03 А не должны превышать приведенных в табл. 4.2.

Таблица 4.2.

Дифференциальный ток

I0n

2 I0n

5 I0n

500 А

Максимальное время отключения

0,5

0,2

0,15

0,15

Минимальное время неотключения

0,13

0,06

0,05

0,04

 

На рис. 4.1 приведена графическая интерпретация области срабатывания УЗО в зависимости от кратности дифференциального тока.

Время-токовая характеристика УЗОРисунок 4.1. Время-токовая характеристика УЗО

В качестве примера исполнения УЗО, отвечающего всем требованиям ГОСТ Р 50807-95, в табл. 4.3 приведены технические характеристики АСТРО*УЗО производства ОПЗ МЭИ.

Таблица 4.3.

Наименование параметра

Номинальное значение

Номинальное напряжение Un, B

220, 380*

Частота fn, Гц

50

Номинальный ток нагрузки In, A

16, 25, 40, 63, 80*

Номинальный отключающий дифференциальный ток (установка) I0n, мА

10, 30, 100, 300*

Номинальный неотключающий дифференциальный ток I0n0

0,5 I0n

Номинальная включающая и отключающая (коммутационная) способность Im, A

1500

Номинальный условный ток короткого замыкания (термическая стойкость) при последовательно включенной плавкой вставке 63 А Inc, A

10000

Номинальное время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Диапозон рабочих температур, оС

-25 – 40

Максимальное сечение подключаемых проводов, мм2

25, 50*

Срок службы: электрических циклов, не менее

 

4000

механических циклов, не менее

10000

* В зависимости от модификации устройства

 5. РЕЖИМ РАБОТЫ, ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Режим работы – непрерывный, продолжительный.

УЗО должно отключать защищаемый участок сети при появлении в нем синусоидального переменного или пульсирующего постоянного (в зависимости от модификации) тока утечки, равного отключающему дифференциальному току устройства (отключающий дифференциальный ток УЗО согласно требованиям стандарта может иметь значения в интервале от 0,5 до номинального значения, указанного заводом-изготовителем).

УЗО, функционально не зависящее от напряжения питания, не должно срабатывать при снятии и повторном включении напряжения сети.

УЗО не должно производить автоматическое повторное включение.

УЗО, функционально не зависящее от напряжения питания, не должно зависеть от наличия напряжения в контролируемой сети, должно сохранять работоспособность при обрыве нулевого или фазного проводов.

УЗО должно срабатывать при нажатии кнопки “Тест”.

Работоспособность контрольного эксплуатационного устройства (кнопка “Тест”) должна сохраняться при снижении напряжения сети до значения 0,85 Un.

Конструкция контрольного эксплуатационного устройства должна исключать возможность попадания сетевого напряжения в цепь, подключенную к выходным выводам УЗО при нажатии кнопки “Тест” когда УЗО находится в разомкнутом состоянии. Это означает, что тестовая цепь должна быть подключена к входному выводу УЗО через контакт, сблокированный с силовой контактной группой.

УЗО должно быть защищено от токов короткого замыкания последовательным защитным устройством (ПЗУ): автоматическим выключателем или предохранителем, отвечающими требованиям соответствующих стандартов. При этом номинальный ток ПЗУ не должен превышать номинальный рабочий ток УЗО.

УЗО должно быть устойчивым к нежелательному срабатыванию при бросках тока на землю, вызванных включением емкостной нагрузки.

Испытания УЗО по этому параметру проводятся импульсом тока с пиковым значением 200 А с длительностью фронта 0,5 мкс.

УЗО должно быть стойким к импульсам перенапряжений.

Испытания проводятся:

·   приложением к фазному и нейтральному (фазным, соединенным вместе и нейтральному) выводам УЗО пакета импульсного напряжения 6 кВ длительностью не менее 10 с;

·   приложением к токоведущим частям и основанию УЗО (УЗО закрепляется на металлическом основании) импульсного напряжения 8 кВ не менее 10 с.

·   Импульсное напряжение получают при помощи генератора, дающего положительные и отрицательные импульсы длительностью фронта 1,2 мкс.

·   Сопротивление изоляции электрических цепей УЗО в нормальных климатических условиях должно быть не менее 10 МОм.

·   Изоляция электрических цепей УЗО должна выдерживать в течение 1 мин без пробоя и поверхностного перекрытия воздействие испытательного напряжения 2200 В (действующее значение) переменного тока частотой 50 Гц.

6. МАРКИРОВКА И ДРУГАЯ ИНФОРМАЦИЯ ОБ УЗО

На каждом УЗО должна быть стойкая маркировка с указанием всех или, при малых размерах, части следующих данных.

1. Наименование или торговый знак (марка) изготовителя.

2. Обозначение типа, номера по каталогу или номера серии.

3. Номинальное напряжение Un.

4. Номинальная частота, если УЗО разработано для частоты, отличной от 50 и (или) 60 Гц.

5. Номинальный ток нагрузки In.

6. Номинальный отключающий дифференциальный ток I0n.

7. Номинальная наибольшая включающая и отключающая коммутационная способность Im.

8. Номинальный условный ток короткого замыкания Inc.

9. Степень защиты (только в случае ее отличия от IР20);

10. Символ [S] для устройств типа S, [G] для устройств типа G.

11. Указание, что УЗО функционально зависит от напряжения сети, если это имеет место.

12. Обозначение органа управления контрольным устройством – кнопки “Тест” – буквой Т.

13. Схема подключения.

14. Рабочая характеристика: тип АС – символ Переменный ток , тип А – символ .

Маркировка по пп. 2, 3, 5, 6, 8, 10, 12, 14 должна быть расположена так, чтобы быть видимой после монтажа УЗО. Информация об устройстве по пп. 1, 7, 13 может быть нанесена на боковой или задней поверхности устройства, видимых только до установки изделия. Информация об устройстве по пп. 4, 9, 11, а также значения интеграла Джоуля I2t и пикового тока Ip должны быть приведены в эксплуатационной документации. Выводы, предназначенные исключительно для соединения цепи нулевого рабочего проводника, должны быть обозначены буквой “N”.
Стандартные значения температуры окружающей среды (-5-40 оС) могут не указываться. Диапазон температур (-25-40 оС) обозначается символом .

7. МЕСТО УСТАНОВКИ И НАЗНАЧЕНИЕ УЗО

Установка УЗО должна предусматриваться во ВРУ, расположенных в помещениях без повышенной опасности поражения током, в местах, доступных для обслуживания. Выбор места установки УЗО в групповых цепях электроустановки зданий должен выполняться с учетом включения в зону действия УЗО прежде всего участков электрической групповой цепи с наибольшей вероятностью электропоражения людей при прикосновении к токоведущим или открытым проводящим частям электрооборудования, которые могут вследствие повреждения изоляции оказаться под напряжением (розеточные группы, ванные, душевые комнаты, стиральные машины, помещения с повышенной опасностью поражения током и т.п.). УЗО, предназначенные для осуществления противопожарной защиты, должны устанавливаться на главном вводе объекта.

В многоквартирных жилых домах УЗО рекомендуется устанавливать в групповых, в том числе квартирных щитках, допускается их установка в этажных распределительных щитках, в индивидуальных домах – во ВРУ и этажных распредщитках.

В схемах электроснабжения радиального типа со значительным количеством отходящих групп рекомендуется установка общего на вводе и отдельного УЗО на каждую группу (потребитель) при условии соответствующего выбора параметров УЗО, обеспечивающих селективность их действия.

При выборе места установки УЗО в здании следует учитывать: способ монтажа электропроводки, материал строений, назначение УЗО, условия эксплуатации по электробезопасности, параметры УЗО, класс помещений, схемы подключения электроприборов и т.п.

8. ОСОБЕННОСТИ ПРИМЕНЕНИЯ УЗО ПРИ РАЗЛИЧНЫХ СИСТЕМАХ ЗАЗЕМЛЕНИЯ

В ПУЭ 7-го издания требования к выполнению групповых сетей сформулированы следующим образом (пп. 7.1.36, 7.1.45):

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный – L, нулевой рабочий – N, и нулевой защитный – РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий.

Нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.
Сечения проводников должны отвечать требованиям п. 7.1.45.

7.1.45. Выбор сечения проводников следует проводить согласно требованиям соответствующих глав ПУЭ.

Однофазные двух- и трехпроводные линии, а также трехфазные четырех- и пятипроводные линии при питании однофазных нагрузок, должны иметь сечение нулевых рабочих N проводников, равное сечению фазных проводников.

Трехфазные четырех- и пятипроводные линии при питании трехфазных симметричных нагрузок должны иметь сечение нулевых рабочих N проводников, равное сечению фазных проводников, если фазные проводники имеют сечение до 16 мм2 по меди и 25 мм2 по алюминию, а при больших сечениях – не менее 50 % сечения фазных проводников, но не менее 16 мм2 по меди и 25 мм2 по алюминию.

Сечение РЕN проводников должно быть не менее сечения N проводников и не менее 10 мм2 по меди и 16 мм2 по алюминию независимо от сечения фазных проводников.

Сечение РЕ проводников должно равняться сечению фазных при сечении последних до 16 мм2, 16 мм2 при сечении фазных проводников от 16 до 35 мм2 и 50 % сечения фазных проводников при бoльших сечениях.

Сечение РЕ проводников, не входящих в состав кабеля, должно быть не менее 2,5 мм2 – при наличии механической защиты и 4 мм2 – при ее отсутствии.

Классификация систем заземления представлена в п. 312.2 ГОСТ Р 50571.2-94. Система заземления является общей характеристикой питающей электрической сети и электроустановки здания.

В ПУЭ 7-е издание приведены следующие системы заземления: ТN-С, ТN-S, ТN-С-S, ТТ, IТ (рис. 8.1-8.5).

Система TN-C

Рис 8.1. Система TN-C

Система TN-S

Рис 8.2. Система TN-S

Система TN-C-S

Рис 8.3. Система TN-C-S

Система TT

Рис 8.4. Система TT

Система IT

Рис 8.5. Система IT

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

Т – непосредственное соединение нейтрали источника питания c землей;

I – все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:
Т – непосредственная связь открытых проводящих частей электроустановки здания с землей, независимо от характера связи источника питания с землей;

N – непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через черточку за N, определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

S – функции нулевого защитного РЕ и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

С – функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником РЕN.

В России до настоящего времени применяется система подобная ТN-С (рис. 8.1), в которой открытые проводящие части электроустановки (корпуса, кожухи электрооборудования) соединены с заземленной нейтралью источника совмещенным нулевым защитным и рабочим проводником РЕN, т.е. “занулены”. Эта система относительно простая и дешевая. Однако она не обеспечивает необходимый уровень электробезопасности.

Системы ТN-S (рис. 8.2), и ТN-С-S (рис. 8.3) широко применяются в европейских странах – Германии, Австрии, Франции и др. В системе ТN-S все открытые проводящие части электроустановки здания соединены отдельным нулевым защитным проводником РЕ непосредственно с заземляющим устройством источника питания.
При монтаже электроустановок правила предписывают применять для нулевого защитного проводника РЕ провод с желто-зеленой маркировкой изоляции.

В системе ТN-С-S (рис. 8.3) во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник РЕN разделен на нулевой защитный РЕ и нулевой рабочий N проводники.

В системе ТN-С-S нулевой защитный проводник PE соединен со всеми открытыми проводящими частями и может быть многократно заземлен, в то время как нулевой рабочий проводник N не должен иметь соединения с землей.

Наиболее перспективной для нашей страны является система ТN-С-S, позволяющая в комплексе с широким внедрением УЗО обеспечить высокий уровень электробезопасности в электроустановках без их коренной реконструкции.

В электроустановках с системами заземления ТN-S и ТN-С-S электробезопасность потребителя обеспечивается не собственно системами, а устройствами защитного отключения (УЗО), действующими более эффективно в комплексе с этими системами заземления и системой уравнивания потенциалов.

Собственно сами системы заземления – без УЗО, не обеспечивают необходимой безопасности. Например, при пробое изоляции на корпус электроприбора или какого-либо аппарата, при отсутствии УЗО отключение этого потребителя от сети осуществляется устройствами защиты от сверхтоков – автоматическими выключателями или плавкими вставками.

Быстродействие устройств защиты от сверхтоков, во-первых, уступает быстродействию УЗО, а, во-вторых, зависит от многих факторов – кратности тока короткого замыкания, которая в свою очередь зависит от сопротивления проводников, переходного сопротивления в месте повреждения изоляции, длины линий, точности калибровки автоматических выключателей, и др. Наличие на объекте металлических корпусов, арматуры и пр., соединенных с РЕ-проводником, повышает опасность электропоражения, поскольку в этом случае вероятность образования цепи: “токоведущий проводник – тело человека – земля” гораздо выше. Только УЗО осуществляет защиту от прямого прикосновения.

Комментарии закрыты.